The evolution of sex and recombination in response to abiotic or coevolutionary fluctuations in epistasis.
نویسندگان
چکیده
Evolutionary biologists have identified several factors that could explain the widespread phenomena of sex and recombination. One hypothesis is that host-parasite interactions favor sex and recombination because they favor the production of rare genotypes. A problem with many of the early models of this so-called Red Queen hypothesis is that several factors are acting together: directional selection, fluctuating epistasis, and drift. It is thus difficult to identify what exactly is selecting for sex in these models. Is one factor more important than the others or is it the synergistic action of these different factors that really matters? Here we focus on the analysis of a simple model with a single mechanism that might select for sex: fluctuating epistasis. We first analyze the evolution of sex and recombination when the temporal fluctuations are driven by the abiotic environment. We then analyze the evolution of sex and recombination in a two-species coevolutionary model, where directional selection is absent (allele frequencies remain fixed) and temporal variation in epistasis is induced by coevolution with the antagonist species. In both cases we contrast situations with weak and strong selection and derive the evolutionarily stable (ES) recombination rate. The ES recombination rate is most sensitive to the period of the cycles, which in turn depends on the strength of epistasis. In particular, more virulent parasites cause more rapid cycles and consequently increase the ES recombination rate of the host. Although the ES strategy is maximized at an intermediate period, some recombination is favored even when fluctuations are very slow. By contrast, the amplitude of the cycles has no effect on the ES level of sex and recombination, unless sex and recombination are costly, in which case higher-amplitude cycles allow the evolution of higher rates of sex and recombination. In the coevolutionary model, the amount of recombination in the interacting species also has a large effect on the ES, with evolution favoring higher rates of sex and recombination than in the interacting species. In general, the ES recombination rate is less than or equal to the recombination rate that would maximize mean fitness. We also discuss the effect of migration when sex and recombination evolve in a metapopulation. We find that intermediate parasite migration rates maximize the degree of local adaptation of the parasite and lead to a higher ES recombination rate in the host.
منابع مشابه
Epistatic Interactions Alter Dynamics of Multilocus Gene-for-Gene Coevolution
Fitness costs associated with resistance or virulence genes are thought to play a key role in determining the dynamics of gene-for-gene (GFG) host-parasite coevolution. However, the nature of interactions between fitness effects of multiple resistance or virulence genes (epistasis) has received less attention. To examine effects of the functional form of epistasis on the dynamics of GFG host-pa...
متن کاملThe role of epistasis on the evolution of recombination in host-parasite coevolution.
Antagonistic coevolution between hosts and parasites is known to affect selection on recombination in hosts. The Red Queen Hypothesis (RQH) posits that genetic shuffling is beneficial for hosts because it quickly creates resistant genotypes. Indeed, a large body of theoretical studies have shown that for many models of the genetic interaction between host and parasite, the coevolutionary dynami...
متن کاملThe evolution of sex dimorphism in recombination.
Sex dimorphism in recombination is widespread on both sex chromosomes and autosomes. Various hypotheses have been proposed to explain these dimorphisms. Yet no theoretical model has been explored to determine how heterochiasmy--the autosomal dimorphism--could evolve. The model presented here shows three circumstances in which heterochiasmy is likely to evolve: (i) a male-female difference in ha...
متن کاملHidden Epistastic Interactions Can Favour the Evolution of Sex and Recombination
Deleterious mutations can have a strong influence on the outcome of evolution. The nature of this influence depends on how mutations combine together to affect fitness. "Negative epistasis" occurs when a new deleterious mutation causes the greatest loss in fitness in a genome that already contains many deleterious mutations. Negative epistasis is a key ingredient for some of the leading hypothe...
متن کاملEvolution can favor antagonistic epistasis.
The accumulation of deleterious mutations plays a major role in evolution, and key to this are the interactions between their fitness effects, known as epistasis. Whether mutations tend to interact synergistically (with multiple mutations being more deleterious than would be expected from their individual fitness effects) or antagonistically is important for a variety of evolutionary questions,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 175 4 شماره
صفحات -
تاریخ انتشار 2007